Adenoviral Vectors Stimulate Glucagon Transcription in Human Mesenchymal Stem Cells Expressing Pancreatic Transcription Factors
نویسندگان
چکیده
Viral gene carriers are being widely used as gene transfer systems in (trans)differentiation and reprogramming strategies. Forced expression of key regulators of pancreatic differentiation in stem cells, liver cells, pancreatic duct cells, or cells from the exocrine pancreas, can lead to the initiation of endocrine pancreatic differentiation. While several viral vector systems have been employed in such studies, the results reported with adenovirus vectors have been the most promising in vitro and in vivo. In this study, we examined whether the viral vector system itself could impact the differentiation capacity of human bone-marrow derived mesenchymal stem cells (hMSCs) toward the endocrine lineage. Lentivirus-mediated expression of Pdx-1, Ngn-3, and Maf-A alone or in combination does not lead to robust expression of any of the endocrine hormones (i.e. insulin, glucagon and somatostatin) in hMSCs. Remarkably, subsequent transduction of these genetically modified cells with an irrelevant early region 1 (E1)-deleted adenoviral vector potentiates the differentiation stimulus and promotes glucagon gene expression in hMSCs by affecting the chromatin structure. This adenovirus stimulation was observed upon infection with an E1-deleted adenovirus vector, but not after exposure to helper-dependent adenovirus vectors, pointing at the involvement of genes retained in the E1-deleted adenovirus vector in this phenomenon. Lentivirus mediated expression of the adenovirus E4-ORF3 mimics the adenovirus effect. From these data we conclude that E1-deleted adenoviral vectors are not inert gene-transfer vectors and contribute to the modulation of the cellular differentiation pathways.
منابع مشابه
Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors
Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...
متن کاملProgramming of human umbilical cord mesenchymal stem cells in vitro to promote pancreatic gene expression.
Human umbilical cord mesenchymal stem cells (HUMSCs) are candidates for tissue engineering and may potentially be used for transdifferentiation into pancreatic endocrine cells. The adenoviral vector is effective in transducing genes into stem cells that are refractory to gene delivery by non‑viral approaches. qPCR was used to detect the pancreatic endogenous gene expression of HUMSCs transfecte...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملDifferentiation of Mesenchymal Stem Cell toward the Insulin-like Cells with Lentivirus Vector Mir-375
Background & Objective: Type1 diabetes is characterized by autoimmune destruction of pancreatic β cells, leading to reduced insulin secretion. Differentiation of mesenchymal stem cells (MSCs) into β-like cells offers new ways of diabetes treatment. MSCs can be insulated from the human umbilical cord tissue and differentiate into insulin-producing cells. Material & Methods: Human um...
متن کاملIn-vitro Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells to Insulin-Producing Cells
Background & Objective: Diabetes is a major chronic metabolic disease in the world. Islet transplantation is a way to treat diabetes. Unfortunately, this method is restricted due to graft rejection and lack of donor islets. Mesenchymal Stem Cells (MSCS) have the ability to differentiate into Insulin-Producing Cells (IPCs). In this study, Human Umbilical Mesenchymal Stem Cells (HUMSCS) were in...
متن کامل